lowering diagonal - significado y definición. Qué es lowering diagonal
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es lowering diagonal - definición

Diagonal mapping; Diagonal map; Diagonal morphisms

Star diagonal         
ACCESSORY FOR ASTRONOMICAL AND GEODETIC TELESCOPES FOR OBSERVING ZENITH NEARBY STARS
Prism diagonal; Star Diagonal
A star diagonal, erecting lens or diagonal mirror is an angled mirror or prism used in telescopes that allows viewing from a direction that is perpendicular to the usual eyepiece axis. It allows more convenient and comfortable viewing when the telescope is pointed at, or near the zenith (i.
Diagonal band of Broca         
BASAL FOREBRAIN STRUCTURE
Diagonal band of broca; Nucleus of diagonal band; Broca's diagonal band; Broca's Diagonal Band; Stria diagonalis; Diagonal band; Nucleus of the diagonal band
The diagonal band of Broca is one of the basal forebrain structures that are derived from the ventral telencephalon during development. This structure forms the medial margin of the anterior perforated substance.
Diagonal pliers         
  • Diagonal pliers with uninsulated handles.
CUTTING TOOL
Dyke (technical); Dikes (tool); Side cutter; Wire cutter; Wire cutters; Wirecutter; Wirecutters; Diagonal cutters; Diagonal cutter; Wire snips; Diagonal cutting pliers; Side cutters; Wire clipper
Diagonal pliers (also known as wire cutters, diagonal cutting pliers, diagonal cutters, side cutters, dikes or Nippy cutters) are pliers intended for the cutting of wire (they are generally not used to grab or turn anything). The plane defined by the cutting edges of the jaws intersects the joint rivet at an angle or "on a diagonal", hence the name.

Wikipedia

Diagonal morphism

In category theory, a branch of mathematics, for any object a {\displaystyle a} in any category C {\displaystyle {\mathcal {C}}} where the product a × a {\displaystyle a\times a} exists, there exists the diagonal morphism

δ a : a a × a {\displaystyle \delta _{a}:a\rightarrow a\times a}

satisfying

π k δ a = id a {\displaystyle \pi _{k}\circ \delta _{a}=\operatorname {id} _{a}} for k { 1 , 2 } , {\displaystyle k\in \{1,2\},}

where π k {\displaystyle \pi _{k}} is the canonical projection morphism to the k {\displaystyle k} -th component. The existence of this morphism is a consequence of the universal property that characterizes the product (up to isomorphism). The restriction to binary products here is for ease of notation; diagonal morphisms exist similarly for arbitrary products. The image of a diagonal morphism in the category of sets, as a subset of the Cartesian product, is a relation on the domain, namely equality.

For concrete categories, the diagonal morphism can be simply described by its action on elements x {\displaystyle x} of the object a {\displaystyle a} . Namely, δ a ( x ) = x , x {\displaystyle \delta _{a}(x)=\langle x,x\rangle } , the ordered pair formed from x {\displaystyle x} . The reason for the name is that the image of such a diagonal morphism is diagonal (whenever it makes sense), for example the image of the diagonal morphism R R 2 {\displaystyle \mathbb {R} \rightarrow \mathbb {R} ^{2}} on the real line is given by the line that is the graph of the equation y = x {\displaystyle y=x} . The diagonal morphism into the infinite product X {\displaystyle X^{\infty }} may provide an injection into the space of sequences valued in X {\displaystyle X} ; each element maps to the constant sequence at that element. However, most notions of sequence spaces have convergence restrictions that the image of the diagonal map will fail to satisfy.